Using the PHT3D Reactive Transport Model for In-Situ Recovery ACL Application Predictions

2013 Uranium Recovery Workshop May 2013

Micheal Gard - Engineering Analytics, Inc. John J. Mahoney, Ph.D. - Mahoney Geochemical Consulting LLC

The Cake is in the Can Now What?

- No Longer Generating Revenue
- Restoration Costs Can Be Significant with Some Estimates as High as 50 % of the Total Life Cycle Costs

ISR Restoration Goals

- Clean Groundwater to MCLs or Background
 - Groundwater Sweep
 - Reverse Osmosis Water Rinse (and Repeat)
 - Long Term Monitoring
- What if Background or MCLs Cannot be Achieved
 - Alternate Concentration Limit
 - Long Term Monitoring
 - Roughly Equivalent to Monitored Natural Attenuation

Restoration Pitfalls

- TIME ---- It Take Years
- Expensive (Up To 50% of the Production Costs)
- MCLs or Background May Not Be Economically Obtained
- Concentration Rebound Common in ISR Restoration
- The Mine Unit Has Undergone Permanent Changes to Geochemistry
- The Conditions That Generated the Roll Front Are Gone

ACL Approach

Develop a Plan Based on the Concept that a POC Concentration Can Be Developed That Will Result a POE Concentration Lower Than the MCL

- Alternate Concentration Limits Has Not Been Completed For Uranium ISR
- ACL for ISR is Different From a Mill or Mine
- Illustrate Pitfalls In ISR Restoration
- Hydro-Geochemical Models to Develop ACL Concentrations and POE and Reduce the Cost of Closure

ACL Comparisons

Uranium Mill ACL

- Nearly Homogenous Geochemistry
- Non-Reactive Transport Models Commonly Used
- POC at Toe of Tailings
- POE is Typically At Property
 Boundary of Mining Company
- Property Transferred to DOE upon Acceptance of ACL and License Termination

ISR ACL

- Variable Geochemistry
- Reactive Transport Model Required
- POC at Monitoring Well Ring
- It May Take Decades for Geochemistry to Stabilize in Mine Unit
- POE within Aquifer Exemption Ring
- No Long Term Custody

Hydro-Geochemical Models and the ACL Process

- Hydro-Geochemical Models Capable of Simulating All of the Chemical Constituents of Mining Unit
- Current Aquifer Exemption Zones are based on Mining and Possibile Excursions
- Aquifer Exemption Zones May Require
 Amendment if ACL Approach is Implemented
- Hydro-Geochemical Models can be Used to Define the Aquifer Exemption Zone Up Front

Hydrogeologic and Geochemical Modeling

ISR Hydrogeologic Process

ISR Geochemical Process

Mining

Post Restoration

Reduced Zone

Organic Carbon Remineralized Uranium Pyrite Consumes Residual Oxygen Remineralized Uranium

Oxidized Zone

Mining Zone

Uranium Re-Mineralization

Uranium Re-Mineralization

Uranium Re-Mineralization

Regulatory Designations

ACL Process

- Point of Compliance (POC)
- Point of Exposure (POE)
- POC Coincident With the Monitoring Well Ring
- POE Coincident With the Aquifer Exemption Area
- Concentration of Contaminants of Concern (COC)
 Must Be Below MCL or Background
 Concentration at the POE
- Use Modeling to Estimate the COC Concentration at the POC that Results in Below MCL At POE

POC and POE Locations

Transport Model Used to Estimate ACL Concentrations

MT3DMS

- Used Where Geochemistry is Stable
- No Reaction
- Retardation based on K_d
- Can be Used in Convention Uranium Mill Settings

PHT3D

- Used where Geochemistry is Variable
- Fully Reactive Transport
- Re-precipitation Removes Uranium From the Solution
 <u>NOT</u> Merely Retard Transport

PHT3D Modeling

- Combines MT3DMS and PHREEQC
- Flow Field Generated By MODFLOW
- Industry Standard Models
- Updated PHREEQC Database
- Fully Three-Dimensional

Modeling Parameters

- Generic Data Collected From Adams (NRC)
 Using Several Sites in Wyoming and Nebraska
- Organic Carbon Mineralization Inferred From University of Wyoming Claudia Stewart Thesis
- Modified Geochemical Database
 - Uranium Dissolution Calibrated to Site Data

Geochemical Zones

Zone Definition

Zone 1 Oxidized Zone	
No Pyrite	Background Oxygen
No Organic Carbon	High pe
Zone 2 Mineralized/Mining Zone	
Ambient Water Into Zone	Dissolve Pyrite
Dissolve Uraninite	
Zone 3 Reduced Zone	
Pyrite	Low pe
No Oxygen	Uraninite Precipitates
Organic Carbon	

Uranium In Solution (ppm)

Sulfate In Solution

Uranium Mineral Dissolution During Mining

ELECTRON ACTIVITY

$$pe = -\log a_{e^{-}}$$

- The pe Indicates the Tendency tf a Solution to Donate or Accept Electrons
- If pe Is Positive, There Is a Strong Tendency for the Solution to Donate Electrons - The Solution Is Oxidizing
- If pe Is Negative, There Is a Strong Tendency for the Solution to Accept Electrons - The Solution Is Reducing.
- LEO Says GER

Modeled pe Distribution

Uranium Re-Precipitation After Restoration

POC and POE Locations

Conclusions

- Modeled Residual Oxygen In Well Field is Quickly Consumed In Pyrite and Organic Carbon Reactions in Down-Gradient Reduced Zone
- Modeled Residual Uranium In Well Field Quickly Re-Precipitated in Down Gradient Reduced Zone
- Generic Kinetic Rates Were Used In the Model
 - Actual Kinetic Rates Will Require Calibration

Conclusions

- Calibrated Hydro-geochemical Model Can Be Implemented To Establish Defensible POC Alternate Concentration Limits
- Reduction In Closure Costs
- Excursion Analysis Can Be Implemented To Establish Defensible Aquifer Exemption Boundaries

Thank You Questions?

