Monitoring Uranium Attenuation at a Uranium Recovery Site in Texas: Stable Isotope Ratios as Proxies for U(VI) Remediation

Anirban Basu
anirbanbasu@berkeley.edu
University of California, Berkeley
Lawrence Berkeley National Laboratory
Uranium Recovery Workshop, 2015
Coworkers and Acknowledgements

University of California, Berkeley
Shaun T Brown
Kathrin Schilling
Donald J DePaolo

Lawrence Berkeley National Lab
John N Christensen

Los Alamos National Lab
Paul W Reimus
Jeffrey M Heikoop
Ardyth M Simmons
Brian House

University of Illinois, Urbana-Champaign
Thomas M. Johnson

Uranium Resources, Inc
Mark Pelizza
Matt Hartmann

Stanford University
Kate Maher
Kimberly Lau
Karrie Weaver
Caroline Harris
Outline

• Introduction to roll-front U deposits, ISR sites, redox-reactions affecting U mobility

• Redox sensitive isotope systems – detecting remediation
 – U “stable” isotopes
 – Se stable isotopes
 – Mo stable isotopes
 – S stable isotopes

• Additional tracers of U migration - U activity ratios as indirect indicators of U removal

• Future work – promises and challenges
Significance of This Study

• What happens to U after restoration, in terms of fate and cycling?
• Is naturally occurring U reduction likely?
• How much information can we get from U concentration measurements? How do we know if reduction is occurring?
• Characterization of reactions affecting uranium mobility at postmining ISR sites
Uranium Roll-front

Groundwater flow crosses an oxidation/reduction interface in the sandstone

Primary reductant for U deposition – fault derived $\text{H}_2\text{S} +$ microbial activity
Reduction- Oxidation Gradient

Dahlkamp, 2010
Se, U and Mo Enrichment within the Roll-front System

Dahlkamp, 2010
In Situ Recovery by O$_2$ Injection

Oxidation during mining

Se(0)/Se(-II) (Ferroselite) \rightarrow Se(IV)/Se(VI) (Selenate/Selenite)

U(IV) (Uraninite) \rightarrow U(VI)

Mo(IV) (Molybdenite) \rightarrow Mo(VI) (Molybdate)

S(-II) (Pyrite/Marcasite) \rightarrow S(VI) (Sulfate)

~50% of world uranium mining is ISR operations
Reduction as Remediation

U(VI) → U(IV)

Uranyl Mobile

Uranous Immobile

Fe(III) → Fe(II)

Fe(II) - Minerals

Bacteria

CO₂ + H₂O

C, H₂

U(IV) → U(VI)

U(VI) → U(IV)
Reduction- Oxidation Gradient

Path of decreasing Eh as solution passes roll front:
- FeS$_2$ \rightleftharpoons Fe(OH)$_3$
- Se \rightleftharpoons SeO$_3^{2-}$
- V$_2$O$_4$ \rightleftharpoons V$_4$O$_4^{2+}$

More reducing:
- Se reduction
- U reduction
- Mo reduction

Dahlkamp, 2010
Usual Kinetic Isotope Fractionation

- Isotopes: Atoms with different numbers of neutrons
- Reduction fractionates stable isotopes: Transition metals and lighter elements

- Lighter isotopes react faster
- Remaining reactant (e.g., Se(VI)) is enriched in heavier isotopes (e.g., ^{82}Se)
Natural Abundance of Se Isotopes

\[\delta^{82}\text{Se}(\text{‰}) = \left[\frac{(^{82}\text{Se}/^{76}\text{Se})_{\text{Sample}}}{(^{82}\text{Se}/^{76}\text{Se})_{\text{NIST3149}}} - 1 \right] \times 1000 \]

Precision: \(\delta^{82/76}\text{Se}: <0.15\% \) (2σ)
U Isotope fractionation

- ^{238}U (99.27%), ^{235}U (0.72%), ^{234}U (0.005%)

- Effectively stable at environmental time scale

- Reduction induces isotopic fractionation

- For heavy elements (U, Hg), size and shape of the nucleus affect bonding

- ^{238}U is more reactive than ^{235}U

$$\delta^{238}\text{U} = \left[\frac{\left(\frac{^{238}\text{U}}{^{235}\text{U}} \right)_{\text{Sample}}}{\left(\frac{^{238}\text{U}}{^{235}\text{U}} \right)_{\text{CRM 112-A}}} - 1 \right] \times 1000\%$$

Precision: $\delta^{238}\text{U}$: $<0.1\%$ (2σ)
Definitions

\[\delta^{82}\text{Se}(\%o) = \left[\frac{(^{82}\text{Se}/^{76}\text{Se})_{\text{Sample}}}{(^{82}\text{Se}/^{76}\text{Se})_{\text{NIST3149}}} - 1 \right] \times 1000 \]

\[\alpha = \frac{R_{\text{Product}}}{R_{\text{Reactant}}} \]

\[\epsilon = 1000 \times (\alpha - 1) \]

\[\epsilon \approx \delta_{\text{product}} - \delta_{\text{reactant}} \]
Isotope Ratios as Indicators of Reduction

- Concentrations sensitive to dilution and adsorption
- With progressive reduction, groundwater becomes enriched in:
 - 235U
 - 82Se
 - 98Mo
 - 34S

- U, Se, S isotope ratios can be used to detect reducing conditions in groundwater
- To determine the extent of remediation, the enrichment factor ϵ must be determined

![Graph showing fraction of U(VI) reduced vs. δ^{238}U (‰)]
Rosita U Mine History and Sampling Locations

- **PAA1**: Production - 1990 to 1992, restoration - 2005-2008
- **PAA2**: Production - 1995 to 1999, restoration - 2001-2005
- **PAA4**: Un-mined

Basu et al., 2015 (ES&T)
Objectives

• Detection of U(VI) reduction and reducing environments from redox sensitive isotope systems (U, Se, Mo, S)
 – 32 groundwater samples from within, upgradient and downgradient of the ore zone

• $^{234}\text{U}/^{238}\text{U}$ signature of the groundwater

• Isotopic characterization of U ore
Results
Uranium Concentrations in Rosita Groundwater
Geochemistry of Rosita Groundwater

Basu et al., 2015 (ES&T)
U Isotopes in Rosita Groundwater

\[\delta^{238}U (\%) \]

U in ore (μg/g)

\[\ln(U(\text{VI}) \, \mu g/L) \]

\[\delta^{238}U (\%) \]

\[\varepsilon = 0.48\% \]

Basu et al., 2015 (ES&T)
Se Isotopes in Rosita Groundwater

Basu et al., 2015 (in prep)
Mo Isotopes in Rosita Groundwater

Reduction?
\[\varepsilon = -1.2\% \pm 0.2\% \]

Dissolution/dilution
Mo Isotopes: Correlation with Eh?

![Graph showing correlation between Mo isotopes and Eh values with data points and contour lines indicating different isotope ratios and Eh ranges.](image)
Unmined Area at Rosita
Unmined PAA4 Transects

<table>
<thead>
<tr>
<th></th>
<th>Western Transect</th>
<th>Mo (Total) (µg/L)</th>
<th>Eastern Transect</th>
<th>Mo (Total) (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Se(VI) (µg/L)</td>
<td>U(VI) (µg/L)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MW 154</td>
<td>109</td>
<td>104</td>
<td>11</td>
<td>48</td>
</tr>
<tr>
<td>BL 39</td>
<td>9</td>
<td>1474</td>
<td>136</td>
<td>0</td>
</tr>
<tr>
<td>MW 149</td>
<td>0</td>
<td>1</td>
<td>14</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Western Transect</th>
<th>Eastern Transect</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>δ82Se</td>
<td>δ238U</td>
</tr>
<tr>
<td>MW 154</td>
<td>2.19‰</td>
<td>0.14‰</td>
</tr>
<tr>
<td>BL 39</td>
<td>6.14‰</td>
<td>0.56‰</td>
</tr>
<tr>
<td>MW 149</td>
<td>0.48‰</td>
<td>0.79‰</td>
</tr>
</tbody>
</table>

Se(VI) reducing

U(VI) Reducing
S isotopes in Rosita Groundwater

U in ore (μg/g)

δ³⁴S (‰)

U(VI) in groundwater (mg/L)

Upgradient MW - PAA1
Ore Zone BL Well - PAA1
Ore Zone BL Well - PAA2
Upgradient MW - PAA2
Downgradient MW - PAA1
Ore Zone BL Well - PAA3
Downgradient MW - PAA3
Upgradient MW - PAA4
Ore Zone BL Well - PAA4
Downgradient MW - PAA4
Rosita U Ore

Ore Zone groundwater

U Ore

Basu et al., 2015 (ES&T)
Tracer for U Migration – U Activity Ratios

- In solid materials, $^{234}\text{U}/^{238}\text{U}$ should be in secular equilibrium (=1)
- When ^{234}Th is ejected in the surrounding medium, groundwater can acquire high $^{234}\text{U}/^{238}\text{U}$
- $^{234}\text{U}/^{238}\text{U}$ in solid can become less than 1
U Activity Ratios at Rosita

![Graph showing U activity ratios](image)

Basu et al., 2015 (ES&T)
U Activity Ratios at Rosita

- Ore Zone groundwater has very low U activity ratios (~0.75)
- Downgradient wells have higher U activity ratios nearing the secular equilibrium value 1
- This pattern suggests natural loss of U (U removal) between ore zone and downgradient wells

<table>
<thead>
<tr>
<th></th>
<th>Upgradient</th>
<th>Ore Zone</th>
<th>Downgradient</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAA 3</td>
<td>MW 129</td>
<td>BL 28</td>
<td>MW 75</td>
</tr>
<tr>
<td></td>
<td>1.22</td>
<td>0.74</td>
<td>1.02</td>
</tr>
<tr>
<td>PAA 2</td>
<td>MW 66</td>
<td>BL 22</td>
<td>MW 85</td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>0.72</td>
<td>0.91</td>
</tr>
<tr>
<td>PAA 4</td>
<td>MW 158</td>
<td>BL 39</td>
<td>MW 149</td>
</tr>
<tr>
<td></td>
<td>0.94</td>
<td>0.77</td>
<td>0.8</td>
</tr>
</tbody>
</table>
Conclusions

• $^{238}\text{U}/^{235}\text{U}$ in Rosita groundwater indicate U(VI) reduction
• $^{82}\text{Se}/^{76}\text{Se}$ are indicators of Se reduction and possibly the onset of U(VI) reduction
• $^{98}\text{Mo}/^{95}\text{Mo}$ may suggest strong reducing environments capable of efficient U(VI) reduction
• U activity ratios ($^{234}\text{U}/^{238}\text{U}$) are effective tracers for ore zone U – also suggest U removal downgradient of the ore zone
• S isotopes are additional tracers for ore zone groundwater
Future Work and Remaining Challenges

- Determination of the size of isotopic fractionation for the relevant reductants at each site
- Determination the reduction kinetics
- Characterization the U ore – XANES, EXAFS (ongoing, presence of U-Ti species suggest an alternative pathway for U immobilization and ore genesis)
- Characterization of the distribution of the reductants/reducing capacity (ongoing)
- Rate of reduction and the magnitude of fractionation can be incorporated in the reactive transport models to accurately predict the fate of U at ISR sites
- Need to incorporate the effects of non-redox processes (dispersion, sorption-desorption, diffusion limitation) on isotopic fractionation
Isotopic and Geochemical Tracers for U(VI) Reduction and U Mobility at an In Situ Recovery U Mine

Anurban Basu,†,‡,§ Shaun T. Brown,§ John N. Christensen,∥ Donald J. DePaola,‡,§ Paul W. Reimus,§ Jeffrey M. Helkoop,∥ Giday Woldegabriel,∥ Ardyth M. Simmons,§ Brian M. House,∥,§ Matt Hartmann,∥ and Kate Mahler∥

1Department of Earth and Planetary Science, University of California, Berkeley, 307 McCone Hall, Berkeley, California 94720, United States
2Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
3Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87544, United States
4Sciences Institution of Oceanography, University of California, San Diego, La Jolla, California 92039, United States
5Uranium Resources, Inc., 4910 S. Potomac Street, Suite 300, Centennial, Colorado 80112, United States
6Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305, United States

ABSTRACT: In situ recovery (ISR) uranium (U) mining mobilizes U in its oxidized hexavalent form (U(VI)) for effective dissolution of U from the roll-front U deposit. Postmining natural attenuation of residual U(VI) at ISR mines is a potential remediation strategy. Detection and monitoring of naturally occurring radionuclide concentrations are important for successful implementation of this remediation strategy. We used the isotopic tracers 3H/U (3H/3H0), 13C/12C, 18O/16O activity ratios, and 234U/238U (3H), and geochemical measurements of U ore and groundwater collected from SU wells located within the upgradient and downgradient of a roll-front U deposit to detect U(VI) reduction and U mobility at an ISR mining site at Rainton, TX, USA. The 3H/3H0 in Rainton groundwater varies from 0.678 ± 0.004 to 0.699 ± 0.004, with a 3H activity indicative of naturally occurring reducing environments conducive to U(VI) reduction. Additionally, characteristic 13C/12C activity ratio of U(VI) in groundwater and U(VI) in groundwater from upgradient wells. The concurrent decrease in U(VI) concentration and 3H/3H0 with an e of 0.40±0.03 to 0.49±0.03 in Rainton and other similar ISR mining sites supports the use of U isotope-based detection of natural attenuation of U(VI) at Rainton and other similar ISR mining sites.