Heap Leaching 101

By Curtis Sealy Uranium Energy Corp Anthony Thompson Christopher Pugsley

UEC

NRC Authority

- Uranium recovery by heap leaching methods is a licensed activity regulated by the NRC.
- Heap leaching covered under 10CFR Part 40
 - Appendix A is directly applicable to licensing, operating and closure of heaps – NRC will consider alternatives to certain criteria
 - Operating and closure of heaps has same requirements as ISR facilities and conventional mills
 - Key point-operating heap will become your long term waste management facility

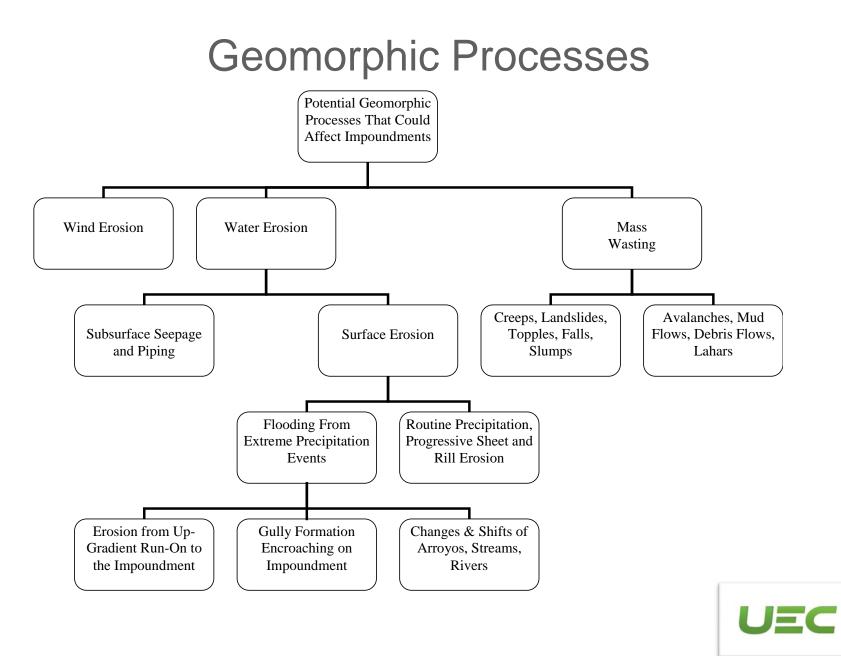
NRC Application Process

- NRC application process straight forward
- 10CFR Part 40 applies to licensing, operating and closure
 - NRC Regulatory guide DG-3024, May, 2008 provides the necessary guidance information to license a facility
- Applicant must prepare an environmental assessment with license application to assess the impact of facility on the environment
 - NUREG-1748 "Environmental Review Guidance for Licensing Actions Associated with NMSS programs, 2001"

Federal/State Application Process

- Non NRC permits may be required
- Permit application requirements vary with agencies
 - Information from NRC submittal fulfills majority of technical requirements
 - Expect State and Local agencies to encroach on NRC authority
 - Expect State and Local agencies to add additional and redundant permit requirements
 - State and Local permit applications can be political

Heap Planning and Design


- Site Selection
 - Most critical aspect in the life cycle of a heap
 - Location, Location, Location
 - Siting a facility is governed by long term closure requirements

Proper Siting Advantages

- Reduces operating and monitoring costs
- Minimizes engineering controls
- Minimizes long term maintenance
- Reduces long term custody and surveillance costs
- Reduces long term care fund provided by owner
- Avoids relocation of by-product material (heap) at conclusion of operations

Evaluation of Geomorphic Processes, Seismic Events– The Key to Properly Locating a Site

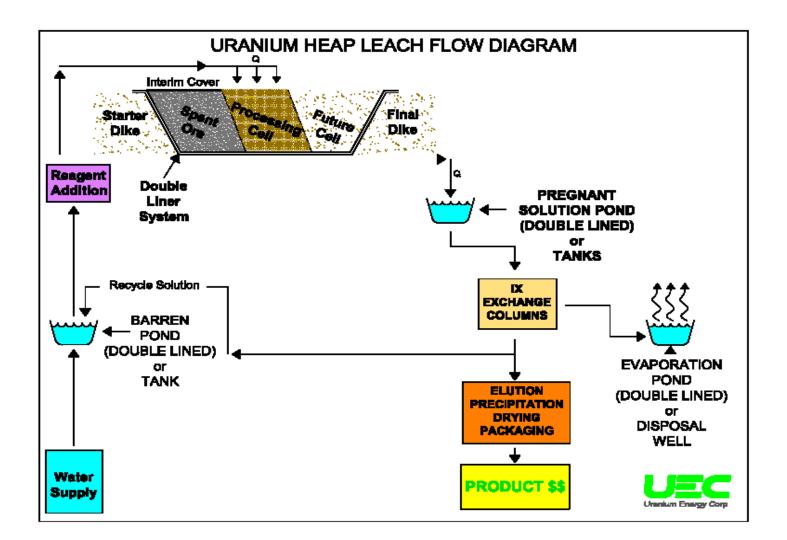
- Regulatory Guide CR-4260 "Methodologies for Evaluating Long Term Stabilization Designs of Uranium Mill Tailings Impoundments"
- Precipitation events affecting heap facilities
 - PMP and cumulative routine precipitation events
 - Flooding of impoundment
 - Gullies, arroyos, head cutting causing intrusion
 - Stream shifts

- Long term wind erosive forces
 - Degradation of heap covers
- Landside/creep areas
 - Long term movements affecting cover integrity
 - Operational difficulties
- Seismic Events
- Avoidance at Capable Faults
 - Design for maximum credible earthquake
 - Site rupture/liquifacton

Protection of Water Resources

- Groundwater
 - Complete characterization of all potentially affected groundwater aquifers
 - Interaction and communication between surface and groundwaters
 - Knowledge of geochemistry of aquifer matrix
- Groundwater Quality
 - Background
 - Proximity to groundwater users
 - Potential for health risks caused by human exposure from facility

Heap Design and Construction


- Design for full containment
 - Static and dynamic stability and impoundment
 - Settlement considerations
 - Protection of water resources
 - Double liner systems
 - Groundwater monitoring program
 - Construction
 - Rigid QC/QA Program
 - Documentation
 - Regulatory Guide 3.11 "Design, Construction and Inspection of Embankment Retention Systems for Uranium Mills, Revision 2, 1977"

Typical Heap Leach IX Facility

- Fully contained heap
- Water supply
- Heap solutions leaching
- Pregnant solution ponds or tanks
- Ion Exchange
- Elution, precipitation, drying, packaging
- Waste disposal (bleed) ponds or deep disposal well
 - NUREG-1569 standard review plan for in-situ uranium extraction license application
 - Consider pertinent portions of Sections 3, 4 and 5 relevant to IX processing

Operations

- Pre-operational and operating monitoring
 - 10CFR Part 20 Standards for protection against radiation
 - Regulatory Guide 4.14 "Radiological Effluental Environmental Monitoring at Uranium Mills"

Effluent and Emissions Controls

- Develop an ALARA Program
 - Management commitment to ALARA
 - Procedures, engineering controls, process controls
 - Surveys and effluent monitoring
 - ALARA reviews and audits
 - Worker training
 - Regulatory Guide 8.10-"Operating Philosophy for Maintaining Occupational Radiation Exposures As Low As Is Reasonably Achievable"
 - Regulatory Guide 8.31-"Information Relevant to Ensuring that Occupational Radiation Exposures at Uranium Mills Will Be As Low As Is Reasonably Achievable

Drip emitter system for controlled leaching

After: Allen J. Breitenbech

Drainage Layer Placement over heap liner

After: Allen J. Breitenbech

Closure

- Close with long term objectives
 - Impoundment stable for 1000 years, and at least 200 years
 - Limit long term emissions from closed facilities to have no more than 20 picocuries/m²/see
 - Radiation from facility no greater than twice background
 - Monitoring system to verify protection of water resources for the long term
 - Surety
 - NUREG-1620 "Draft Standard Review Plan for the Review of a Reclamation Plan for Mill Tailings Sites Under Title II of the Uranium Mill Tailings Radiation Control Act (Draft Revision 1)
 - NUREG-1623 "Design of Erosion Protection For The

Heap Leaching Basics

- Ore Heaps
 - Fully contained double liner/leak detection system
 - Typically 20 to 25 feet high
- Uniform Leaching Optimum Recovery
 - Avoidance of preferential flow paths
 - Uniform ore size 1-1/4 inch
 - Uniform placement
 - Stackers, conveyors, dozers
 - Avoid Dumping
 - Placement of fine material in separate cells
 - 15% fines (10 mesh) 60 fold decrease in permeability

- Application of Leach Solutions
 - Drip system uniform application rate
 - Application rate ~0.15 to .3 gal/min/Ft²
 - Spraying Non-uniform application, loss of surface permeability, worker protection issues, maintenance issues, micro-droplet loss of reagents to wind

Improvement of Leach Kinetics

- Pretreatment of ore with leach solution during placement (curing of ore)
- Bioleaching
- Agglomeration

Environment/Closure

- Consider heap flushing/neutralization at closure
- Drain sealing
 - Pile drains to specific retention
 - Use sulfate resistant grouts (Type V cement to seal drains)

Looking Forward

- Innovative leaching hybrid heap-In-Situ
 - Leaching of partially saturated ore zones
 - Applicable to shallow zones/open pits
 - Injection Wells
 - Conventional spacing
 - Oxygen-Bicarbonate leach
 - Can inject as partially saturated flow
 - Vertical Flows
 - Horizontal collection drain below ore zone

Aquifer restoration

- Partially saturated flow
- Reduced Time and effort for restoration

CONCLUSIONS

Heap Leach Basics

- Simple process short construction period
- Low capital expenditures
- Low operating costs
- Radiation exposures less than at conventional mill sites
 - Major exposures
 - Dusting of ore piles
 - Dusting for ore heap
 - Moisture addition
 - Consider geotextiles on heap

Ore Heaps

- Fully Contained Engineered double liner/leak detection system
- Typically 20 to 25 feet high
- Construct Heap for Optimum Recovery
 - Avoidance of preferential flow paths and horizontal impervious layers
 - Uniform ore size 1-1/4 inch
 - Uniform placement-avoid Compaction
 - Stackers, conveyors, dozers
 - Avoid Dumping
 - Placement of fine material in separate cells or agglomerate
 - 15% fines (10 mesh) 60 fold decrease in permeabilit

- Application of Leach Solutions
 - Application rate ~0.15 to 0.3 gal/min/Ft²
 - Drip system
 - Uniform application rate
 - Avoids loss of fluids to Environment
 - Low maintenance
 - Avoid Spraying
 - Non-uniform application,
 - Loss of surface permeability,
 - Worker protection issues,
 - Maintenance issues,
 - Loss of reagents to wind

Improvement of Leach Kinetics

- Pretreatment of ore with leach solution
 - Reduces Leach time
- Bioleaching
 - Improves permeability
 - Shortens Leach Time
 - Reduces Acid consumption
 - Increases Recovery
 - Decreases cost
- Agglomeration
 - Reduces fine Content
- Separation of Fines

Environment/Closure

- Consider heap Neutralization/Flushing at closure
 - Enhances groundwater protection
 - Reduces Radon Emissions
 - Reduces Cover Thickness
 - Reduces costs
- Drain sealing
 - Drains remain open until Heap drains to specific retention
 - Use sulfate resistant grouts (Type V cement to seal drains)

Looking Forward

- Innovative leaching hybrid heap/In-Situ Leach
 - Leaching of Un-Saturated ore zones
 - Applicable to shallow ore zones above water table/open pits
 - Modified Injection Wells
 - Well spacing based on Ore Configuration
 - Oxygen-Bicarbonate leach
 - Inject under a Unit Gradient- partially saturated flow
 - Unit Gradient -Vertical Flow
 - Horizontal collection drains below ore zone

- Aquifer restoration
- Reclaim as In-Place Heap
 - Partially saturated flow- No Flooding
 - Reduced time and effort for restoration